Skip to content

논문(Publications)

<2024>

53. Morita M., Hiroharu Y., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team. (2024) Analysis of cation composition in dolomites on the intact particles sampled from asteroid Ryugu. Analytical chemistry (accepted) (https://doi.org/10.1021/acs.analchem.3c03463)

52. Torrano Z. A., Jordan M. K., Mock T. D., Carlson R. W., Gautam I., Haba M. K., Yokoyama T., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team. (2024) Neodymium-142 deficits and samarium neutron stratigraphy of C-type asteroid (162173) Ryugu. Meteoritics & Planetary Science (in print) (https://doi.org/10.1111/maps.14109)

51. Kawasaki N., Yamamoto D., Wada S., Park C., Kim H., Sakamoto N., Yurimoto H. (2024) 26Al–26Mg chronology of high-temperature condensate hibonite in a fine-grained, Ca-Al-rich inclusion from reduced CV chondrite. Meteoritics & Planetary Science (in print) (https://doi.org/10.1111/maps.13989)

50. Hu Y., Moynier F., Dai W., Paquet M., Yokoyama T., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team. (2024) Pervasive aqueous alteration in the early Solar System revealed by potassium isotopic variations in Ryugu samples and carbonaceous chondrites. Icarus 409: 115884 (https://doi.org/10.1016/j.icarus.2023.115884)

49. Park T.-Y., Nielsen M. L., Parry L. A., Sorensen M. V., Lee M., Kihm J.-H., Ahn I., Park C., de Vivo G., Smith M. P., Harper D. A. T., Nielsen A. T., Vinther J. (2024) A giant stem-group chaetognath. Science Advances 10: eadi6678 (https://doi.org/10.1126/sciadv.adi6678)

 

<2023>

48. Nakanishi N., Yokoyama T., Ishikawa A., Walker R. J., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team. (2023) Nucleosynthetic s-process depletion in Mo from Ryugu samples returned by Hayabusa2. Geochemical Perspectives Letters 28: 31-36 (https://doi.org/10.7185/geochemlet.2341)

47. Yokoyama T., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team. (2023) Water circulation in Ryugu asteroid affected the distribution of nucleosynthetic isotope anomalies in returned sample. Science Advances 9(45): adj7048 (https://doi.org/10.1126/sciadv.adi7048)

46. 박창근 (2023) 빠른 입계 확산 수치 모델의 우주화학에의 적용. 광물과 암석 36(3): 199-212. (https://doi.org/10.22807/KJMP.2023.36.3.199)

45. Tang H., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team. (2023) The oxygen isotopic compositions of samples returned from asteroid Ryugu with implications for the nature of the parent planetesimal. The Planetary Science Journal 4: 144-159 (https://doi.org/10.3847/PSJ/acea62)

44. Chiu I-H., Terada K., Takahito O., Park C., Takeshita S., Miyake Y., Ninomiya K. (2023) Non-destructive elemental analysis of lunar meteorites using a negative muon beam. Meteoritics & Planetary Science 58: 1333-1344 (https://doi.org/10.1111/maps.14059)

43. Fujiya W., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team. (2023) Carbonate record of temporal change in oxygen fugacity and gaseous species in asteroid Ryugu. Nature Geoscience 16: 675-682 (https://doi.org/10.1038/s41561-023-01226-y)

42. Nguyen A., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team. (2023) Abundant presolar grains and primordial organics preserved in carbon-rich exogenous clasts in asteroid Ryugu. Science Advances 9: eadh1003. (https://doi.org/10.1126/sciadv.adh1003)

41. Piani L., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team (2023) Hydrogen isotopic composition of hydrous minerals in asteroid Ryugu. Astrophysical Journal Letters 946: L43. (https://doi.org/10.3847/2041-8213/acc393)

40. Enokido Y., Nakamura T., Matsumoto M., Miyake A., Shibuya T., Park C., Zolensky M. (2023) Mineralogical alteration of a type A CAI from Allende CV3 chondrite: Formation of secondary dmisteinbergite and its phase transition to anorthite. Meteoritics & Planetary Science 58: 405-420. (https://doi.org/10.1111/maps.13961)

39. Paquet M., Moynier F., Yokoyama T., Dai W., Hu Y., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team, Tachibana S., Yurimoto H. (2023) Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotopic analysis. Nature Astronomy 7: 182-189. (https://doi.org/10.1038/s41550-022-01846-1)

38. Okazaki R., The Hayabusa2-volatile team (Nagao K., Lee J. I.), The Hayabusa2-project team, The Hayabusa2-curation team(2023) Noble gases and nitrogen in samples of asteroid Ryugu record its volatile sources and recent surface evolution. Science 379: abo0431. (https://doi.org/10.1126/science.abo0431)

37. Yokoyama T., Nagashima K., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team, Tachibana S., Yurimoto H. (2023) Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science 379: abn7850. (https://doi.org/10.1126/science.abn7850)

 

<2022>

36. 김화영, 박창근 (2022) 전자현미분석에서 발생하는 규산염 유리 시료의 Na 이동 효과 보정. 광물과 암석 35(4):457-467. (https://doi.org/10.22807/KJMP.2022.35.4.457)

35. Kawasaki N., Nagashima K., Sakamoto N., Matsumoto T., Bajo K., Wada S., Igami Y., Miyake A., Noguchi T., Yamamoto D., Russell Sara S., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team, Tachibana S., Yurimoto H. (2022) Oxygen isotopes of anhydrous primary minerals show kinship between asteroid Ryugu and comet 81P/Wild2.Science Advances 8: eade2067. (https://doi.org/10.1126/sciadv.ade2067)

34. Okazaki R., The Hayabusa2-volatile team (Nagao K., Lee J. I.), The Hayabusa2-project team, The Hayabusa2-curation team (2022) First asteroid gas sample delivered by the Hayabusa2 mission: A treasure box from Ryugu.Science Advances 8: eabo7239. (https://doi.org/10.1126/sciadv.abo7239)

33. Moynier F., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team, Tachibana S., Yurimoto H. (2022) The Solar System calcium isotopic composition inferred from Ryugu samples. Geochemical Perspectives Letters 24: 1-6. (https://doi.org/10.7185/geochemlet.2238)

32. Hopp T., Dauphas N., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team, Tachibana S., Yurimoto H. (2022) Ryugu’s nucleosynthetic heritage from the outskirts of the Solar System. Science Advances 8: eadd8141. (https://doi.org/10.1126/sciadv.add8141)

31. Kim J., Park C., Yi K., Lee S., Kim S. J., Jung M.-J., and Cheong A. C.-s. (2022) COM-1 and Hongcheon: New monazite reference materials for the microspot analysis of oxygen isotopic composition. Journal of Analytical Science and Technology 13: 34. (https://doi.org/10.1186/s40543-022-00342-5)

30. Barosch J., The Hayabusa2-initial-analysis chemistry team (Park C.), The Hayabusa2-project team, The Hayabusa2-curation team (2022) Presolar stardust in asteroid Ryugu. Astrophysical Journal Letters 935: L3. (https://doi.org/10.3847/2041-8213/ac83bd)

29. Han J., Park C., Brearley A. J. (2022) A record of low-temperature asteroidal processes of amoeboid olivine aggregates from the Kainsaz CO3.2 chondrite. Geochimica et Cosmochimica Acta 322: 109-128. (https://doi.org/10.1016/j.gca.2022.02.007)

28. Hayashi H., Mikouchi T., Kim N. K., Park C., Sano Y., Takenouchi A., Yamaguchi A., Kagi H., Bizzarro M. (2022) Unique igneous textures and shock metamorphism of the Northwest Africa 7203 angrite and its implication for the crystallization process and evolutional history of the angrite parent body. Meteoritics & Planetary Science 57: 105-121. (https://doi.org/10.1111/maps.13776)

 

<2021>

27. Obase T., Nakashima D., Choi J., Enokido Y., Matsumoto M., Nakamura T. (2021) Water-susceptible primordial noble gas components in less-altered CR chondrites: A possible link to cometary materials. Geochimica et Cosmochimica Acta 312: 75-105. (https://doi.org/10.1016/j.gca.2021.08.012)

26. Kim N. K., Lee M. J., Lee J. I., Kim J. (2021) Oxygen isotope record of magmatic evolution of alkaline volcanic rocks at the Pleiades, northern Victoria Land, Antarctica. Geosciences Journal 25: 787-797. (https://doi.org/10.1007/s12303-021-0002-x)

25. Kawasaki N., Park C., Wakaki S., Kim H., Park S. Y., Yoshimura T., Nagashi K., Kim H. N., Sakamoto N., Yurimoto H. (2021) An effect of variations in relative sensitivity factors on Al-Mg systematics of Ca-Al-rich inclusions in meteorites with secondary ion mass spectrometry. Geochemical Journal 55: 283-287. (https://doi.org/10.2343/geochemj.2.0634)

24. Haba M. K., Nagao K. (2021) Cosmogenic noble gas nuclides in zircons from the Estherville mesosiderite. Meteoritics & Planetary Science 56: 992-1004 . (https://doi.org/10.1111/maps.13660)

 

<2020>

23. Kim N. K., Park C., Kusakabe M. (2020) Two-point normalization for reducing inter-laboratory discrepancies in δ17O, δ18O, and Δ′17O of reference silicates. Journal of Analytical Science and Technology 11: 51. (https://doi.org/10.1186/s40543-020-00248-0)

22. Park S. Y., Park C., Kim H. N., Lee S., Lee S. K. (2020) Structure of type A CAI-like melts: A view from multi-nuclear NMR study of melilite (Ca2Al2SiO7-Ca2MgSi2O7) glasses. Chemical Geology 558: 119894. (https://doi.org/10.1016/j.chemgeo.2020.119894)

21. Sano Y., Onda S., Kagoshima T., Miyajima T., Takahata N., Shibata T., Nakagawa C., Onoue T., Kim N. K., Lee H., Kusakabe M., and Pinti D. L. (2020) Groundwater oxygen anomaly related to the 2016 Kumamoto earthquake in Southwest Japan. Proceedings of the Japan Academy, Series B 96: 322-334. (https://doi.org/10.2183/pjab.96.024)

20. Wada S., Kawasaki N., Park C., Yurimoto H. (2020) Melilite condensed from an 16O-poor gaseous reservoir: Evidence from a fine-grained Ca-Al-rich inclusion of Northwest Africa 8163. Geochimica et Cosmochimica Acta 288: 161-175. (https://doi.org/10.1016/j.gca.2020.08.004)

19. Hwang H., Galtier E., Cynn H., Eom I., Chun S. H., Bang Y., Hwang G., Choi J., Kim T., Kong M., Kwon S., Kang K., Lee H. J., Park C., Lee J. I., Lee Y., Yang W., Shim S.-H. D., Vogt T., Kim S., Park J., Kim S., Nam D., Lee J. H., Hyun H., Kim M., Koo T.-Y., Kao C.-C., Sekine T., Lee Y. (2020) Sub-nanosecond phase transition dynamics in laser-shocked iron. Science Advances 6(23): eaaz5132. (https://doi.org/10.1126/sciadv.aaz5132)

18. Kawasaki N., Wada S., Park C., Sakamoto N., Yurimoto H. (2020) Variations in initial 26Al/27Al ratios among fine-grained Ca-Al-rich inclusions from reduced CV chondrites. Geochimica et Cosmochimica Acta 279: 1-15. (https://doi.org/10.1016/j.gca.2020.03.045)

 

<2019>

17. Kim H. N., Park C., Park S. Y., Kim H., Kim M. S. (2019) Partial melting induced chemical evolution in shocked crystalline and amorphous plagioclase from the lunar meteorite Mount DeWitt 12007. Journal of Geophysical Research - Planets 124: 1852-1863. (https://doi.org/10.1029/2019je005998)

16. Cheong A. C., Jeong Y.-J., Lee S., Yi K., Jo H. J., Lee H.-S., Park C., Kim N. K., Li X.-H., Kamo S. L. (2019) LKZ-1: a new zircon working standard for the in situ determination of U-Pb age, O-Hf isotopes, and trace element composition. Minerals 9: 325-340. (https://doi.org/10.3390/min9050325)

15. Jogo K., Ito M., Wakita S., Kobayashi S., and Lee J. I. (2019) Origin of the metamorphosed clasts in the CV3 carbonaceous chondrite breccias of Graves Nunataks 06101, Vigarano, Roberts Massif 04143 and Yamato 86009. Meteoritics & Planetary Science 54: 1133-1152. (https://doi.org/10.1111/maps.13272)

14. Yoshizaki T., Nakashima D., Nakamura T., Park C., Sakamoto N., Ishida H., Itoh S. (2019) Nebular history of an ultrarefractory phase bearing CAI from a reduced type CV chondrite. Geochimica et Cosmochimica Acta 252:39-60. (https://doi.org/10.1016/j.gca.2019.02.034)

13. Kawasaki N., Park C., Sakamoto N., Park S. Y., Kim H. N., Kuroda M., Yurimoto H. (2019) Variation of initial 26Al/27Al ratios among fluffy Type A Ca-Al-rich inclusions from reduced CV chondrites. Earth and Planetary Science Letter 511:25-35. (https://doi.org/10.1016/j.epsl.2019.01.026)

12. Kim N. K., Kusakabe M., Park C., Lee J. I., Nagao K., Enokido Y., Yamashita S., Park S. Y. (2019) An automated laser fluorination technique for high precision analysis of oxygen three isotopes in silicates. Rapid Communications in Mass Spectrometry 33:641-649. (https://doi.org/10.1002/rcm.8389)

11. 한영철, 정혜진, 문장일, 백종민, 한창희, 허순도 (2019) 저비용 센서를 이용한 청정 실험실 실시간 감시 (Real-time monitoring of cleanroom laboratories using low cost sensors). 지질학회지 55(1):141-148. (https://doi.org/10.14770/jgsk.2019.55.1.141)

10. Park S. Y., Park C. (2019) Spatially-resolved mineral identification and depth profiling on chondrules from the primitive chondrite Elephant Moraine 14017 with confocal Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 207:46-53. (https://doi.org/10.1016/j.saa.2018.08.065)

 

<2018>

9. Kööp L., Nakashima D., Heck P. R., Kita N. T., Tenner T. J., Krot A. N., Nagashima K., Park C., Davis A. M. (2018) A multielement isotopic study of refractory FUN and F CAIs: Mass-dependent and mass-independent isotope effects. Geochimica et Cosmochimica Acta 221:296-317. (https://doi.org/10.1016/j.gca.2017.04.029)

8. Jogo K., Ito M., Nakamura T., Kobayashi S., and Lee J. I. (2018) Redistribution of Sr and rare earth elements in the matrices of CV3 carbonaceous chondrites during aqueous alteration in their parent body. Earth, Planets and Space 70: 37. (https://doi.org/10.1186/s40623-018-0809-5)

7. Onda S., Sano Y., Takahata N., Kagoshima T., Miyajima T., Shibata T., Pinti D. L., Lan T., Kim N. K., Kusakabe M., and Nishio Y. (2018) Groundwater oxygen isotope anomaly before the M6.6 Tottori earthquake in Southwest Japan. Scientific Reports 8: 4800. (https://doi.org/10.1038/s41598-018-23303-8)

 

<2017>

6. Jogo K., Nakamura T., Ito M., Wakita S., Zolotov M. Y., and Messenger S. R. (2017) Mn–Cr ages and formation conditions of fayalite in CV3 carbonaceous chondrites: Constraints on the accretion ages of chondritic asteroids. Geochimica et Cosmochimica Acta 199: 58-74. (https://doi.org/10.1016/j.gca.2016.11.027)

5. Park C., Nagashima K., Krot A. N., Huss G. R., Davis A. M., Bizzarro M. (2017) Calcium-aluminum-rich inclusions with fractionation and unidentified nuclear effects (FUN CAIs): II. Heterogeneities of magnesium isotopes and 26Al in the early Solar System inferred from in situ high-precision magnesium isotopic measurements. Geochimica et Cosmochimica Acta 201:6-24. (https://doi.org/10.1016/j.gca.2016.10.002)

 

<2016>

4. 김현나, 박창근 (2016) 달운석 Mount DeWitt 12007의 마스컬리나이트 충격 변성 특성 연구(Shock metamorphism of plagioclase−maskelynite in the lunar meteorite Mount DeWitt 12007). 한국광물학회지 29(3):131-139. (https://dx.doi.org/10.9727/jmsk.2016.29.3.131)

3. Nagao K., Haba M. K., Lee J. I., Kim T., Lee M. J., Park C., Jwa Y. J., Choi B.-G. (2016) Major elements and noble gases of the Jinju (H5) meteorite, observed fall on March 9, 2014, in South Korea. Geochemical Journal 50:315-325. (https://doi.org/10.2343/geochemj.2.0418)

2. Kööp L., Davis A. M., Nakashima D., Park C., Krot A. N., Nagashima K., Tenner T. J., Heck P. R., Kita N. T. (2016) A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochimica et Cosmochimica Acta 189:70-95. (https://doi.org/10.1016/j.gca.2016.05.014)

1. Kööp L., Nakashima D., Heck P. R., Kita N. T., Tenner T. J., Krot A. N., Nagashima K., Park C., Davis A. M. (2016) New constraints on the relationship between 26Al and oxygen, calcium, and titanium isotopic variation in the early Solar System from a multielement isotopic study of spinel-hibonite inclusions. Geochimica et Cosmochimica Acta 184:151-17. (https://doi.org/10.1016/j.gca.2016.04.018)

koreamet logoSafety Laboratory korpi logo Korea Curation of Antarctic Meteorities
Korea Polar Research Institute
26, Songdomirae-ro, Yeonsu-gu, Incheon, Korea
Curator: changkun"at"kopri.re.kr

Copyright (C) Korea Polar Research Institute. All rights reserved.

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소